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ABSTRACT

A free-boundary problem which arises from a galvanizing process is :

studied. The physical problem is that of an infinite cylinder 9'—; R "; "
STy
withdrawn from a fluid bath. Formally, this is a gravity-driven .\:
unidirectional viscous fluid flow on the exterior of the cylinder @ x R. \~
. The existence of a unigque classical solution is shown under éertaln conditions ._._
on -g?\‘ " and asymptotic rerults for the thlckneqa of the coat are obtained for __
* large and small withdrawal speeds. If R'T/ ;n a convex set, then the region E\
bounded by the free surface of the fluid is shown to be convex, using level
curve techniques. Finally, level curve techniques are used to bound the K
curvature of the free boundary in terms of that of the fixed boundary. Ei?f
-
- %
AMS (MOS) Subject Classification: 35R35, 3520 s

Key Words: Free-boundary problem, galvanizing, variational inegquality, level
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SIGNIFICANCE AND EXPLANATION

Coating processes are important in many industrial applications, and are
currently reééiving much attention from applied mathematicians. Recently, a
mathematical model for continuous hot-dip galvanizing has been proposed by
Tuck, Bentwich, and van der Hoek. The physical process described is that of a
steel wire or sheet pulled vertically from a bath of molten zinc. The coating
of zinc which adheres to the steel gradually solidifies. In the present
paper, this galvanizing problem is analyzed using modern variational
-ethod-f The results presented here, especially the asymptotic dependence of
the thickness of the coat, will help in an evaluation of the Tuck-Bentwich-

van der Hoek model.
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A FREE-BOUNDARY PROBLEM ARISING
FROM A GALVANIZING PROCESS

Thomas I. Vogel

!'l. Introduction. Many industrial processes involve applying a thin coat of liquid to
some material. To coat an infinitely long cylinder, a coemon method is to pull it out of
a liquid bath so that the gravity vector points parallel to the generators of the
cylinder. This is typically used for galvanizing, where the cylinder (not necessarily
clrcular) is a wire or sheet of ateel, and the liquid is molten sinc. As the cylinder
moves up, it carrles with it a coat of liquid, which gradually solidifles. Over a
substantial length of the cylinder, the flow of the liquid is steady and stralght down,
with the outer boundary of the region of flow a free surface. The Adriving forces are
gravity and viscosity.

Tuck, Bentwich, and van der Hoek [7] (hereafter referred to as TBH) have recently

given a formulation of this problem. Let Q' lz be the cross sectlon of the cylinder,

and let I be its boundary. Let & ‘2 be the cross section of the region of flow plus
the cylinder, and let [ be the boundary of 2 {which is free). The region of flow is
exterior to the given Q°'. Then they show that under certain assumptions, the upward

velocity field wi(x,y) must satisfy

bw = g/v inf-Q°
v-" on I
v"‘/! on T
dw

an-o on I .

Here g ls the downward acceleration due to gravity, V is the kinematic viscoslity of

the liquid, and W, ls the withdrawal speed of the cylinder. It is important to keep in

Sponsored by the United States Army under Contract Wo. DAAG29~-80-C~004l. This material is
based upon work supported by the National Science Foundation under Grant No. MC8-7927062,
Mod. 2.

L] “r e 3
[ l. o ¢ 4 l'

s .

»

v, 8,9,

. ser @
WA

P ]
s



. .‘"“.v

ey

g o

[ EN

condition that the above system has a solution. The fact that we impose both Dirichlet

\

and Neumann boundary conditions on TI' will prevent a solution w from existing for a

general . This situation is typical of free bounda;y problems, where the fact that the
boundary conditions are overdetermined is compensated by the freeness of the boundary.
The model of TBH neglects surface tension and assumes that the net rate of transport

Q= ] f w(x,y)dax dy
e

is maximized. More precisely, they show that if w(x,y:;U) satisfies
Aw = g/v in U - 5'

n L
w'ﬂn [/

3w
an 0 on 23U,

then if 0{U) = f f wi(x,y;U)ax dy is maximized over all admissible U, the maximum will
u-n*

w
be obtained when w(U) = ;5 on Q.
In this paper, we will work with the normalization:

u=viw'B/g  and

80 that the equations become

Notice that the last condition is equivalent to |Vul = 0 on T, since I is a level
surface of u. If the dependence on ¢ is to be emphasized, we will write Pc and u, .
In Section 2, we show the existence of a classical solution of (1.1) in n

dimensions 1f Q' is starshaped with respect to a ball. This section consists mainly of

-2-
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arguments in TBH placed on firmer theoretical g‘round-‘. In Section 3, we obtain asymptotic

\
results in two dimensions for ¢ large and ¢ small, and also some useful comparison

results. In particular, as c¢ tends to infinity, the free surfaces l‘c tend to circles
of radius 2 / c In Section 4, we will prove the convexity of the set
log 2¢ *
fu>t) for c>»t >0 if Q' is convex, and in Section 5, we show that for n = 2, if

Q' is convex, then each point of the ridge of § 1is closer to I than to T.
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2, istence and Reqularit

let Q' C R" be a bounded open set which,is starshaped with respect to all points
contained in some ball, and let c be a positive constant. Suppose that [ = Q' is
sufficiently smooth. Then we will prove in this section that there exists a set
9 containing Q' with T = 32 analytic, and a non-negative function u which
satisfies equation (1.1). This will be done variationally by using the functional

2.1 3w = | 9wl + 2v.

where Bp is a ball containing ' of some sufficiently large radius R centered in

a=lve o™, wer lah,

vae¢ in ', v=0 {n l"-nk,v>o everywhere}

Theorem 2.1 If Q' is a bounded set in R" and [ (=30') is in c>'°

Q. JR will be minimized over the set Kc
’

» then there

exists a unique u € Ke R such that
[

an(n) - inf Jn(v) .

ve Kc'R

Moreover, u € Hz'p(l -q') N wz"'(a -Q') for all P ¢ =, wvhere wz'p(a Q') =

R loc R R

{ve L’(nn-a'), v e Lz(ax-a')} . As a consequence, u is ¢! in By - q'  (see

Gilbarg and Trudinger [S]). Moreover, u is analytic in Q -~ Q' and Au =1 there,
vhere Q = {u > 0}.
Proof: This follows from standard theorems (Friedman [2}, Sections 1.3 and 1.4).
Note: The relation between the above variational formulation and equations (1.1) can now
be demonstrated. Let { be contained in C:m-a'). For small enough €,

v-u+e:exc. Since

R

JR(u+c¢) > Ja(u).

it follows that

] (Tue9g+r) = 0.
a-a°

-4-
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Integrating by parts,
[ (du=1)g =0,
hence Au =1 in 0-0°. a-a"

The free boundary conditions now follow assuming & N B, =9, foron T = 3{wo},
we have |Vu] = 0 by the contlnuity of Vu in Bn - 5'. In Section 3, we will see that
for Ro sufficiently large, Q N aan = g, It is clear that for any Ry, Rz > Ry, the
minimizers u and u will be lgcntlcal. We will assume from now on that R is

Ry R,

larger than this Ro. thus eliminating the dependence of u on R.
Corollary 2.2: ‘The minimizer obtained in Theorem 2.1 satisfles 0 < u < c.
Proof: One easily checks that

JR(uAc) < Jpta) ,

where u A ¢ = min (u(X),c). Moreover, u A c € Kc so that the uniqueness part of
’

R’
Theorem 2.1 applies.

Definition: A reglon U is almost star-like with respect to a point P € U if the
characteristic function X, is non-increasing along rays from P. The difference between
an almost star-like region and a star-like region is that an almost star-like region may
contain a portion of a ray through P jin jits boundary.

c2'0u

Lemma 2.3: If 238' |is and Q' is almost star-like with respect to the origin,

then 3 €0 in Q9 -9' anda Q is almost star-like with respect to the origin. (Here

ar
rs= /x12+"#x: )
Proof: This is proven in TBH (7] for n = 2 by showing that «r %‘;‘: is subharmonic in

Q2 - Q' with non-positive boundary values. The proof is the same in n dimensions. The
almost star-likeness of 2 follows, since u and hence )(ﬂ is non=increasing along
rays.

Theorem 2.4: If ' is starlike with respect to each point contained in a ball

‘t + then T i analytic, and u satisfies:
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Au = 1 ing -a
\

u=gc on I

u=0 on T

3u _ -

™ 0 on T

24+
.

I need not be C although it is clearly Lipschitz continuous.

Proof: PFirst we assume that 3Q° is in c2*e, Since I is almost starlike with
respect to each point in Be +» 1t is therefore Lipschitz continuous. This is enough to
apply a theore- of Caffarelli (Friedman [2], p. 162) to show that T is (:‘| and hence
analytic. Once we have the smoothness of I, the boundary conditions on u will

necessarily be satisfied.

If I is not czm' then we may approximate f' by an increasing nested series of

sets ni' with 3Q'; smooth and 01°'; starlike with respect to each point in LA To see

this, let f(e) be the radius of I at angle O. This continuous function can be
approximated from below by swmooth functions f i(6) wvhose graphs will be the
391 's. Let “1 be the minimizer corresponding to ni . We shall see (Theorem 3.1)
that {“1(”} is a bounded, increasing sequence for each X. lLet u(X} = H.- 'ui(X)-
Then u(X) clearly is equal to ¢ on ' and gero outside of Bg.
We may bound "R(“i) uniformly by considering a radial function v which is equal
to ¢ on a ball Bp with Q C chnl!’ 0 on B,, and c on R".  Then each

Jplu,) is less than J (v). Thus | an:l.l2 is uniformly bounded, so that there is a
B
weakly convergent subsequence to Vu.R We therefore have

J_(u) € 1lim inf J_(u,)
R o R 4
But JR(“) > JR(“i)
for each i, so that

J (u) = 1lim J_(u,)
R PPN R 1

-6~

o .-
o o e




a ;. P . " N " R T 8
I S LRI b LR, s V. L T et N m LY Ve Vo Wy N g -~ - S N, N i S e B AR e e i S A A R

! . o
* " I claim that u is minimal over the class of ‘funcu.on. equal to c on ' and 0 -
é outside of Qn. Por, if this is not true, then for some Vv Qith JR(v) < JR(u)l q
i , we must have JR(V) < Jn(“i) for large enough. 1. Since Qi C Q' this is a i
:: contradiction. '
) The free boundaries T increase out to T, the boundary of {u > 0}). Since each
‘ r i is starshaped with respect to B:. 80 is '« But then we apply the same argument as E
;:; before to say that ' is analytic and u satisfies the correct boundary conditions on :_
r.
. Theorem 2.5 (Uniqueness) If @' is starlike, then there exists at most one solution "
% (5 o (1.1).
g Proof: Suppose there are two solutions, (u,l) and (u*, I'*), to (1.1). We assume that K
? ' is starlike with respect to the origin. Define ' ‘
j 'ur = u(rX) .
| ro-tr ;
': I = % t .
z Since Q' 1is starshaped, 0'C n; tor r< 1. let s =gsup {(r] (Q%)'cC ﬂ;}. “We may *
’E assume without loss of generality that s € 1, for we could exchange the roie of u and ':
u* if this were not so. Then l" and T* are tangent at some point Y.

The boundary of Q¢ C (R,-0')) consists of I* N (2,-2')) and I,. On both of g

these surfac;s. u, > u*, so0 that u, > u* everywhere in Qv N m.-ﬁ' '). However, at :

* Y we have ":" -t 0, 8o that u, = u* on Q* N (9'-5") by the strong maximum &

- n an

principle. Hence s = 1 and we have the desired uniqueness.

Combining Theorems 2.4 and 2.5, we see that there exists a unique solution to (1.1)

i
,53 if Q' is starlike with respect to all the points in some B e * If Q' is starlike with

respect to only one point, then there is at most one solution to (1.1).

-7-
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!3. Asymptotic Results
The following comparison theorem is basic to our work, and is needed in the proof of

Theorem 2.4.

Theorem 3.1: Let Q' and ﬂ; satisfy the hypotheses of Theorem 2.1 with

ﬂ; Q' and let <, < c. Let u and u, minimize I with boundary values c¢ on

I and e, on 21 respectively. Then u > u, everyvhere.

Proof: We have :

JR(uAu1) + JR(uVu1) = Ja(u) + JR(u1)

K0

by a simple computation (here urg, = min (u,u"), and uvu, = max (u,u1)). But
Pl h
:,_.‘ uAu, € “i’c, R and uvu, e xc,R' so the unigueness result of Theorem 2.1 applies.
N,
oy We may use the same techniaque of proof to give an interesting characterization of u.
, Theorem 3.2: Let u, ', n; be as above, and let v, minimize
o

J = [ 1w+ 2v, :
A a . A

R

FooN

St

vhere A C B,, over the set {ve L'(A), v e Lz(A), ve=g¢, on !:1, v=0 on 23A}

SR R

1

(here we are not requiring v to be non-negative). Then u > Va everywhere.

Proof: This is proven by the same argument as in the proof of Theorem 3.1.

o

L

&

Corollary 3.3: We may therefore characterize u(X) when I |is Czﬂ and Q' is

kA

X

,g‘ starshaped with respect to a ball as:

u(X) = sup v, (X),

. AdQ )
pad 3A smooth

% where v, (X) solves the Dirichlet problem

?* Va "€ on I

t Ya =0 on 3A

s AvA = 1 in A-a'

VA(X) will not in general be non-negative.

-t

We now doal exclusively with the case n = 2.

epeiniin | -




»y To determine the asymptotic behavior of T as ¢+ % and c + 0, it is necessary
to look at radial solutions. That is, given p, the radius of the circular €ixed

boundary, and c > 0, we seek a vb (r) to solve:
l

1
'c(r) + T vp'c(r) 1

3.1 -
{ ) vp'c(p) c
¢ = o
':; Vp'c(Y)
3 :
= vp c(Y) =0
.ﬁ§ wvhere Y, to be determined, is the radius of the free boundary. One can calculate that

Y 1is given by the implicit relation:

2 2 2

i
& (3.2) c =L 4 Xoeq)y ,
v 4 2 P
3 where ¢ >0, p >0, Y >p, and log is log e
{j Lemma 3.4: Por Ro - Ro(c,n') sufficiently large, Q N OBR = ¢, where ¢ 1is fixed and
- °

BR is centered in 2°'.

[

Proof: Since § is contained in some ball Bp, the result will follow if it is proven
for symmetric solutions. But Y in equation (3.2) will be bounded if ¢ and c “re
bounded, since the highest order term in Y on the right hand side, 72 log Y, must be
boundead.

This lemma was already used extensively in Section 2.

Prom the radial solutions we may investigate the behavior as ¢ + » for a larger

class of Q' ‘s.

Q) Theorem 3.5: Let ' be a bounded get containing a ball BG(O) around the origin. Then
.j both a(rc.O) = {nf |X] and d1 (r ,0) = gup |X|] are equal to
™ xer ¢ xer
N c c
LN
2 Y < + of ¥ €
log 2¢ log 2¢

as ¢+ =, {(Here T {s subscripted to emphasize the dependence on c). Less formally,

Yc is asymptotic to a circle of radius 2 v/ 10; 7 a8 © tends to infinity.
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Proof: Prom Theorem 3.1, we know that l‘c is Eonuinod in the annulus centered at the
\

origin with inner radius vY(e,c) and outer radius vy(p,c), where Dp contains Q°'.

Therefore, we must show that if Y(p,c) ntlatiea,(s.z)., then as c + =, .

Y2/'_—(/_) :

log 2¢ log 2c¢

where dependence on 9o will only appear in the second term.
First, it is clear from (3.1) that Y cannot stay bounded as c tends to infinity,
and that g—z > 0. Dividing by ¢ we obtain:
2 2 2 2
1= _ X ,XloadY Ylogp
4c 4c 2c 2¢c
For the largest order term on the right hand side, we must have

2
1im o9 X

[
cre 2c
and the other terms must go to zero.

If we write

y = 2£(c) / < ¢+ then

log 2¢

log2 + % log ¢ - ¥ log(1log2c) + log f(c)

2
(3.3) 1im 2f" (c) =1
+
log 2 + log ¢

We can observe from the above expression that f(c) is bounded. The largest order

term on the left of (3.3) is

2 log ¢
£ (c) logc + log 2’

which must approach 1 as ¢ + ®. The other terms in (3.2) will go to zero. We then

conclude that
lim Y (pec)

che 2/ [-] =1
log 2¢

so that Y(p,c) = 2/ < + o(/ _g_) , as desired.

log 2¢ log 2¢
We now examine the thickness of the coat £ - 5' as ¢ tends to gero if

+a
I e c2 . Pix a point P on I, and let p and Py be two radii so that a ball of

-10-
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radius p 1is contained in Q' and tangent to‘ L at P, and a ball of radius Py is
\

exterior to '

the maximum curvature of L. If Q°

and tangent to T at P. One choice for p is 1/c(f) where «(I

From Theorem 3.1, we have

For an upper bound on d4(l,P),

solutions.

equations (3.1) for a value Y, < Pye The same calculation as before yields that Y

ar,p) » vlp,c) = o

we must look at interior radially symmetric

That is, for the fixed radius Pqe we seek a function vp c solving

solves the implicit relation (3.2). Here, now, we seek a root

conclude:

(3.4)

L)

- Y‘(p',c) > A(T,P) > yY(p,c) ~»p

A straightforward calculation using (3.2) yields that:

for p1 # 4o,

2c .

closely for small c.

(3.

If 91 = 4n,

lm —— = uya —S—— Y,
c*0  (p=y) c*0 (91-11)

1'

71 less than p‘.

then the upper bound for the thickness of the coat is

To sharpen the asymptotics in (3.4), we must analyze p - Y and Py = Y, more

5)

1

0of

1im —(L—
cs0 P7Y\ (p-y)?

One can calculate that

-1/2).;_?'

by substituting (3.2) in for c, and taking the limit as Y approaches p.

Now, letting p -y =7 2c £(c), where lim f(c) = -1,

(3.5), one obtaing:

after some manipulation.

o W WIS LWLW LN, Y,
\*ﬂ.”' ’:\','.}xf-u
[ ") L% o

.'d' '.‘v'.'u"

P2

XY,

-

".'.' v.w

\

c+0

e Ufle) _ 1
o0 /¢ 3/ 2

Therefore,

p-~yYy==~/2c +¢c +ole).
3

-11-

and substituting into

)

is convex, thp_n P, can be chosen to be infinity.
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S8imiliarly, for the interior radially symetric solution,

Py - =/2c + 3.%1 + olc) .
We have proven the following theorem:
Theorem 3.6: Let ' be a set with cz«: boundary I satisfying the hypothesis of
Theorem 2.4. lLet P be apoint of I , and let p and Py be the radii of disks
tangent to I at P which are interior and exterior to Q' respectively. Then
/2¢ - ;.? + ol(c) ¢ 4(p,T) < V2¢c + ;:‘ + ol(c) . If Q' is convex, then the right hand
side is simply f2¢ .

Note: This is similiar to a result obtained by Friedman and Phillips (3] for an interior

free boundary problem for a more general equation.

Remark: If I has an angle at P, then the free boundaries for the scaled functions

u, - & u(/: X) will approach the free boundary corresponding to a wedge as fixed
boundary. Thus, to investigate the asymptotic thickness for small ¢ when [ has

corners, one must look at wedge solutions (see TBH(7) for some numerical results).

12~
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’4. Convexity

In this section we investigate what results if Q' is assumed to be convex.
Theorem 4.1: If Q' is convex, then the sets {u>r}, r> 0 are convex, including
Q@ ={u>0}. (This is true in n dimensions)
Proof:(This approach was suggested by Daniel Phillips.) Assume first that ' is

smooth. PFrom Caffarelli and Spruck (1], we know that if up satisfies the free boundary

problem: M =uP  in np—'si M

| 4

Yu | =0 on T
IPI P

then Qp and all the sets {up >r}, r>0 are convex. We deal with the particular v,

which minimizes 2
Jp (v) = 'L‘h;J—

i (A

A e
BR{E' +pﬂvp+.

o<

These functions have been studied by Phillips [6]. It is not difficult to show that the

56

“g

functions up are uniformly bounded in w"z(BR) as p tends to zero. Therefore a
1,2

g,

subsequence converges weakly in W to some function u, which must be the unique
minimizer to our original functional (2.1). Using the Rellich lemma, up(x) + u(x)
pointwise almost everywhere in B, by going to another subsequence. (This is a standard
technique : see Priedman [2]). et A C By, be the set on which u, converges pointwise

to u. If the level sets of u are not convex, then there are three colinear points X,

g

st

LN

Y, Z in By with u(Y) < min{ul(X), u(2)), and Y between X and 2. Since

u(aA) = u(BR). where U is Lebesque measure, we may assume that X, Y, and Z are

IO AAE N

M LM EPLLY

contained in A. But this, combined with the pointwise convergence of { up} contradicts
the convexity of the level sets of up. 1 now present an independent proof of the
convexity of the free surface in 2 dimensions which is more elementary.

Lemma 4.2: Llet (x(s), y(s)), 0 < s < ¢ be a parametrization of the free boundary curve

T. Suppose at X, = (x(s,), y(s,)), x(s) has a local extremum. Then there is a level

curve (\ly = 0} extending into 1 from X, .




Y.
.
o Set
b

.
o~
L%

LA

CA

A et ek

<

e K ‘;

A SRR NS

x i &t

"

- .ff.?l

.
AL &

phividie

- R
(4

N (XA
7 VN {

Proof: Let LS 0 be a decreasing sequ.nco‘luch that {u = ek} is a € curve. We

)
have that {u = ck} will contain a point X, near X, with a locally extreme x value
for small enough tk' with 1lim xk =X . Since {u=e_} has a vertical tangent at

ke o . -k

X “y(xk) = 0. But uy is harmonic in @ - §1', so that the properties of its level
curves are well known. 1In particular, the set vy = 0 must consist of piecewise analytic
curves with a finite number of branch points. Therefore, some analytic curve along

which uy = 0 osust start at xo and extend into Q.

Alternate proof of convexity of @ for n = 2 : Suppose that 0 is not convex. Assume

first that 30" is smooth. We can then rotate the coordinate system so that the x

coordinate has a local extremum on ' for at lbglt four points X,, X,, X, and X,. At

i
uy is identically zero on T and ny is harmonic, it follow- that no Yi can both start

each point X, there is a level curve Yy, on which uy = 0 extending into Q. Since

and end on ', nor can any two Yl'l meet at a branch point or a point of I. Since
Yi cannot terminate in the region § - 5', it fellows that these curves must terminate
at four distinct points Yi et. However, the normal derivative of u is non-zero on
L, so that uy can equal zero only at the two points of I where the normal is
horizontal, since I 1is smooth. This contradicts the fact that the ¥; are distinct.
If I is not smooth, we can approximate from within by smooth sets Q;.
Note: The method of the alternate proof generalizes to elliptic operators with constant
coefficients

i3

atdu, + blu, + cu = £lw) , 1,3 = 1,2,

with ¢ € 0 and f£'(u) > 0, and with the same houndary conditions on I and T as

before.

14~
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. 5. The I:ld f
In this ncuon we prove that each point of tho ridge (defined later) of 1 must be

closer to Q' than T if Q' is convex. We f!.rqt need another level curve lemma.
’ ' 2

Lemma 5.1 lLet Yb C - 0' be a smooth curve along which ¢(r,0) = f— - ru, is a

constant b. Then ug is strictly monotone along Yy Specifically, if ALY is

traversed so that {9 > b} 1lies to the right and {y < b} 1lies to the left, then ug is

.5 e

strictly increasing. This does not depend on where the origin for polar coordinates is

=
»,

.
[y
.

f

1+8 1

placed.

Proof: The ltunction- ¢ and uy are harmonic conjugates, so that this follows from a
well-known result. See Friedman and Vogel (4] for a proof. .
Lerma 5.2: At every point P €[, there initiates at least one level curve of ¢. If -
P is a local extremum of ¢ restricted to I, (we will write this as ¥lp) then there

are at least two level curves of ¥ initiating at P and going into Q.

Proof: Since u, and ¥ are harmonic conjugates, the normal derivative of ¥ at P *,
. equals the tangential derivative of Y at P which is zero (since uy = 0 on ). By ‘,:

the boundary point lesma, ¢ cannot attain a local extremum on T, hence every point of &

I' is the start of a level curve of V. ' iy

To prove the second assertion of the lemma, assume that ¢(P) 1is a strict local

minimum of “I" Since W¥(P) cannot be a local minimum of ¢ in any Bt(l’) nw, it iy

follows that there is a region O = {y < $(P)} which contains P in its closure. But {

90 contains no points of T except for P in some neighborhood of P, we c¢onclude :

that there are at least two curves {¢ = $(P)} initiating at P and going into I, as '::

desired. :

Now, suppose that the origin 0 for polar coordinates is placed outside of Q°'. N

Then I introduce the following notation. :_
8 -
_ 3
5 . -15-
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g e e e o Y L B s SR X oo s g e =3y <3 i iy 43 s s LT w'a [T L L R

b
,;f f,={xer|ux)> 0
"oi
B L, ={xef | u(x) <0}
e 2 “r ! P
[
oy th = (x e | uyx) >0
X
PN I ={xerf| uyx) <o} .
X
. <+ -
"A In addition, 21, 121, etc., are intersections of the appropriate above sets.
Lemma 5.3: There is precisely one point on t1 at which ug = 0, and this is the closest
VR
J""-} point of I to O.
9y
N Proof: Suppose Y € I sgatisfies ug(¥) = 0, u:('l) > 0. Then the tangent £ to I

id%

at Y is perpendicular to the line 0Y, and Q' 1lies to one side of £. Since
Ll u (¥) > 0, Q@' 1ies on the far side of £ from 0. It is clear then, that Y is the
unique closest point of I to O0.

+*
Hence we know that 21 is divided into two segments, [

- 0
1 and t‘, and a point t'

el
vhere uy = 0.
3 j Definition: The ridge R of 1 is the set of all points lo € such that
Q d(x) = daist(X,32) is not in c"'(V) for any neighborhood V of X.
:J,. Let Ro = {Xo e ﬂld(xo) - lxo -Y = |x° = Z| for two distinct Y, Z e T}, and
s R, = {xo € 2] there exists precisely one point Y € ' with a(x,) = Ix - Y| and
xo is the center of the osculating circle at Y}. Then R = Ito U R; and, since 2 1is
é‘? convex, R = ;o {Priedman (2] Chapter 2, Bection 7).

” Theorem 5.4 1f xo e R, and Q' is convex, then dut(xo,l‘) > dilt(xo,t). In

‘ consequence, if X € R, then dist(X ,I') > dist(X ,I).
fi Proof: Suppose this is not the case, and let X, be the polar origin. LlLet P, and
‘_%' P, be points of T such that d(X)) = IX, = P)| = |X - P,| = t. Since u,

0 on T, VIr has a local minimum at P, and Py, Therefore, from Lemma 5.2, there

+ - + -
are level curves 71. Y, starting at Py, and 72' 12 starting at Pz, on which

'&'s

% 2 + + .

3 VSt /2. As Y' and 12 are traversed in the direction away from T, Yy increases,
R,

’é‘} and as T; and Y; are traversed in this direction, Uy decreases. Since by

Pt

assumption, the distance from xo to each point of L is greater than ¢, all of the

-16-
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level curves Yf. Y: must terminate on 2‘. Indeed, y: and 1; sust end on t:,
and Y] and v, must end on I..

Let UCQ - 3' be the opsn set whose boundary consists of 7:, the segment of t:
between the endpoints of 7: and 7;, 7;, and T from Py to P,. Here the condition
that UC Q = 2' forces the direction that T is traversed from Py to P, for a1,
tet U' = (xev ) wx)>t?/2) ana U =~ (x €U | $X) < t?/2). Then neither U*
nor U is empty, and either Y: c 3u’ ana Y; C U or vice versa. For if this were
not the case, then Lemma 5.1 would be violated, since 11 and 72 both have a region
vhere ¢ > e’/z lying to their right as they are traversed from I' to .

We are now led to a contradiction, since there must then bea a curve Y* C U on which

v: t2/2 which goes from t o to sepsrate U’ and U”. Then ug will be
increasing along Y* from t+ to TI', violating the free boundary condition.

As a corollary, we get a rough bound on the curvature of T.

240

Corollary 5.5: Assume that £' is convex, and [ is C , and let x(!‘e) be the

maximum of the curvature of l‘c, and xk(I) be the maximum of the curvature of I. Then

2
— > x(T')
Y(c.I/‘(:)) - 1/‘“:) c

Proof: At each point X of I we may place a circle of radius 1/c(L) contained in

Q' and tangent to I at X. Prom the proof of Theorem 3.6, we know that at each point
X €I the distance from X to [ is at least v(c, 1/‘(“) - 1/‘(“. Now consider the
ball B, /() of radius 1/x(I') osculating at the point of greatest curvature of I.

From Theorem S.4, 'Vlt(l') must contain a point of I, hence

2
YT ¥ vic,1/x(E)) - /x(L),

yielding the desired result.
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